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Abstract� We examine the central issues of invertibility� stability� artifacts� and frequency�

domain characteristics in the construction of non�linear analogs of the wavelet transform� The

lifting framework for wavelet construction motivates our analysis and provides new insight

into the problem� We describe a new type of non�linearity for use in constructing non�linear

transforms� a set of linear predictors that are chosen adaptively using a non�linear selection

function� We also describe how earlier families of non�linear �lter banks can be extended through

the use of prediction functions operating on a causal neighborhood� We present preliminary

results for a synthetic test image�

�� Introduction

In his classic treatise on the workings of the human visual system� Marr focuses on the

importance of the representation of information for various cognitive tasks ���� The way in

which information is represented brings out certain types of features while hiding others� Image

compression applications also rely heavily on having an e�cient representation of image data�

Ideally we would like to approximate an image with a small number of parameters� The wavelet

transform provides such an e�cient representation� Most of the wavelet coe�cients of a typical

image are nearly zero� and the image thus is well�approximated with a small number of large

wavelet coe�cients�

The reason for the e�ciency of the wavelet representation is that images often are well modeled

as a set of locally smooth regions separated by edges� Within these smooth regions� �ne�scale

wavelet coe�cients are small� and coe�cients decay rapidly from coarse to �ne scales� In the

neighborhood of edges wavelet coe�cients decay much more slowly� but because of the local

support relatively few wavelet coe�cients are a	ected by edges�

Still the large wavelet coe�cients near edges are expensive to code� Much current research

focuses on enabling wavelet coders to exploit the structure present in wavelet coe�cients along

edges� Successful coders perform some form of conditioning ���� or variance prediction �
��
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In this paper we focus on improving the properties of the wavelet transform rather than

the encoder� More precisely� we try to build adaptive wavelet transforms that result in fewer

large wavelet coe�cients� Such non�linear wavelet transforms allow for more �exibility in image

representations� Construction of non�linear �lter banks is a straightforward process and has been

discussed in ��� and ��� Experiments with a nonlinear �lter bank for image coding presented in

��� show results that are quite promising� The key open question in the use of these non�linear

constructions is one of design� what is the most e	ective way to utilize the additional degrees

of freedom obtained from relaxing the constraint of linearity�

We examine the central issues of invertibility� stability� artifacts� and frequency�domain char�

acteristics �to the extent to which these are well�de�ned� in the construction of non�linear ana�

logues of the wavelet transform� Our analysis is motivated by the new perspective provided by

the lifting framework for the wavelet transform� We describe a useful new type of non�linearity

for use in constructing our non�linear transforms� a set of linear predictors that are chosen

adaptively using a non�linear selection function� We also describe how the family of non�linear

�lter banks of ��� and �� can be extended through the use of prediction functions operating on

a causal neighborhood�

�� The Lifting Scheme

Our non�linear transform is most easily described in terms of the lifting framework ���� ����

The main feature of lifting is that it provides an entirely spatial interpretation of the wavelet

transform� as opposed to the more traditional Fourier based constructions� This spatial in�

terpretation will enable us to construct spatially varying and adaptive or non�linear wavelet

transforms�

Let X �n� be a signal� Our goal is to obtain a more e�cient representation of X �n�� i�e�� a

representation in which most of the coe�cients are near zero� We �rst partitionX �n� into its even

and odd polyphase components Xe�n� and Xo�n�� where Xe�n� � X ��n� and Xo�n� � X ��n� ���

If the X �n� correspond to the samples of an underlying smooth function� then the even and

odd polyphase components are highly correlated� This correlation structure is typically local

and thus we should be able to accurately predict a coe�cient from the odd polyphase component

based on nearby coe�cients from the even polyphase component�

Prediction� In the interpolating formulation of lifting� we �rst predict the odd polyphase

coe�cients Xo�n� from the neighboring even coe�cients Xe�n�� The predictor for each Xo�n� is

a linear combination of neighboring even coe�cients�

P �Xe��n� �
X
l

plXe�n� l��

We obtain a new representation of the X �n� by replacing Xo�n� with the prediction residual�

This leads to the �rst lifting step�

H �n� � Xo�n�� P �Xe��n�� ���
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If the underlying signal is locally smooth� the prediction residuals H �n� will be small� Further�

more� the new representation contains the same information as the original signal X �n�� given

the even polyphase Xe�n� and the prediction residuals H �n�� we can recover the odd polyphase

coe�cients Xo�n� by noting that

Xo�n� � H �n� � P �Xe��n��

This prediction procedure is equivalent to applying a high�pass �lter to X �n� �hence the

notation H �n��� The prediction �lter is typically designed so that it is perfect for polynomials

up to and including degree N � �� In wavelet terminology� the synthesis scaling function to

which the prediction �lter gives rise can reproduce polynomials of degree up to N � � and the

dual wavelet has N zero moments�

Update� The second lifting step transforms the even polyphase coe�cients Xe�n� into a low�

passed and subsampled version of X �n�� We obtain this low�pass �ltering version by updating

Xe�n� with a linear combination of the prediction residuals H �n�� We replace Xe�n� with

L�n� � Xe�n� � U�H��n�� ���

where U�H� is a linear combination of neighboring H values�

U�H��n� �
X
l

ulH �n� l��

Because each lifting step is always invertible� again no information is lost� Given L�n� and P �n��

we have

Xe�n� � L�n�� U�H��n�

and again

Xo�n� � H �n� � P �Xe��n��

Note that H and L are at half rate� and thus this transform corresponds to a critically sampled

perfect reconstruction �lter bank� One can show that the update function determines the prop�

erties of the primal wavelet and dual scaling function� In particular� if the update �lter is one

half the adjoint of the predict �lter then the primal wavelet has N zero moments as well �����

A simple example of lifting is the construction of the Deslauriers�Dubuc family of wavelets

from a single prediction step followed by a single update step� The following prediction and

update steps are equivalent to performing a single stage of the ����� Deslauriers�Dubuc wavelet

transform�

H �n� � Xo�n�� �Xe�n� �� � �Xe�n� � �Xe�n� �� �Xe�n� ��� �� ���

L�n� � Xe�n� � �H �n� �� � �H �n� �� � �H �n� �H �n� ��� ��� ���

The predict step cancels cubic polynomials and leaves the residual in the high pass signal

H �n�� The update step results in a low�passed and subsampled version of X being placed in

L� It should be emphasized that lifting is a general construction that is not limited to the
�



Deslauriers�Dubuc family� Using the Euclidean algorithm� one can decompose any FIR wavelet

transform into a sequence of prediction and update steps ����

�� Nonlinear Lifting

The analysis �lters used for wavelet compression applications typically correspond to fourth

order polynomial predictors like the one described above� Such predictions work well if the

underlying signal is locally smooth� However� these predictions break down when the signal is

not locally well�modeled as a low�order polynomial� In particular� the predictions work poorly

near edges and other singularities�

Our goal is to switch between di	erent predictors based on the local properties of the im�

age� This makes the P operator data dependent and thus non�linear� lifting guarantees that

the transform remains reversible� Where the image is locally smooth we use higher order pre�

dictors� Near edges we reduce the order and thus the length of the predictor as to avoid using

coe�cients across edges� Ideally we would like to use predictors that take into account the fact

that discontinuities in images tend to occur along continuous curves� Such an adaptation would

allow us to exploit the additional spatial structure that we know exists in edges�

���� Problems� Adapting the predictor makes the transform non�linear� thus the transform of

the sum of two images is no longer the sum of each of the transforms� Consequently� it no longer

makes sense to talk about the concept of basis functions� which relies fundamentally on linear

superposition� We thus focus on the properties of the transform�

There are two problems with making the above predict�update lifting non�linear�

�� We need a coherent interpretation of the updated coe�cients� After the �rst iteration of

our transform� we are basing all of our predictions on updated coe�cients� If we are to

make e	ective predictions beyond the �rst iteration of the transform� we need some kind

of structure in the update�

Furthermore� the reason why wavelets provide e�cient representations lies in their space�

frequency localization properties� The spatial localization comes from the fact that the �lter

operations are local� this immediately carries over to the non�linear case� The frequency lo�

calization comes from the interpretation of the H as a band�pass��ltered and downsampled

version of the signal and L as a low�pass��ltered and downsampled version of the signal�

Maintaining this in the non�linear case is highly non�trivial�

Consider again the example ���� While it is easy to see that the prediction �lter P leads

to a high pass �lter� it is not immediately clear that the update U leads to a low pass �lter�

The reason is that the lifting structure mandates that the high pass coe�cients H must

be reused in the computation of L� and thus L depends both on P and on U � By carefully

adjusting the update U to the prediction P � one can ensure that L is a low�pass��ltered

and subsampled version of the original signal� In the example U�H� had to be chosen as

�H �n� �� � �H �n� �� � �H �n� � H �n� ������� While it is known how to adjust U for a
�



spatially varying� but linear P ����� it is not immediately clear how to build a non�linear

U adjusted to a non�linear P �

�� We need to ensure that the transform is stable� Lossy coding schemes introduce errors into

the transform coe�cients� so it is crucial that the non�linearities do not unduly amplify

these errors� Our goal is to use a high order predictor in smooth regions and a lower

order prediction near edges� In order to avoid sending side information on which predictor

was chosen we need to base the choice only on the Xe�n�� However� in lossy compression

the decoder only has quantized even coe�cients bXe�n� rather than the original coe�cients

Xe�n�� If we use locally adapted �lters� quantization errors in coarse scales could cascade

across scales and cause a series of incorrect �lter choices leading to serious reconstruction

errors� The problem cannot be solved by synchronization� i�e�� having the encoder make its

choice of predictor based on quantized even values� The reason is that the reconstructed

values bXe�n� are obtained from quantized low�pass values bL�n�� The low pass signal L�n� is

a function of the prediction residual signal H �n�� which in turn depends on what �lters are

chosen for prediction� Hence the encoder cannot obtain the quantized values bXe�n� until

it selects a predictor� and it cannot select a predictor without obtaining bXe�n�� If we are

to employ a non�linear lifting procedure for lossy coding� it is essential that we avoid this

stability problem�

���� Solution� We propose a simple modi�cation which solves both problems� switch the pre�

dict and update lifting steps in the wavelet transform� We thus �rst update the even samples

based on the odd samples yielding the low pass coe�cients� We then reuse these low pass co�

e�cients to predict the odd samples� which gives the high pass coe�cients� We use a linear

update �lter and let only the choice of predictor depend on the data� Because we update �rst

and the transform is only iterated on the low pass� all low pass coe�cients throughout the entire

pyramid linearly depend on the data and are not a	ected by the non�linear predictor� Thus the

prediction is only based on low pass coe�cients which are computed as in the classical wavelet

transform� Furthermore� if we perform the transform backwards� i�e�� starting the prediction

process at the lowest frequency �coarsest� subband and working from coarse to �ne scales� we

can keep the encoder and decoder perfectly synchronized�

The question remains on how to �nd the P and U �lters even in the linear case� One idea is

to simply use the same P and U �lters from the Deslauriers�Dubuc family but in reversed order�

this results in switching the analysis and synthesis functions� This� however� is problematic for

coding applications� because the analysis wavelets in the Deslauriers�Dubuc family are much

less smooth than the synthesis wavelets� Since reconstructed images are built up from synthesis

wavelets� these non�smooth building blocks would lead to highly visible artifacts in the recon�

structed image� Furthermore� trying to boost the smoothness of the new building blocks leads

to needlessly long �lters which cause ringing�
�



Instead we propose a solution based on Donoho�s average�interpolation which �ts into the

update�predict form of lifting ��� ���� It leads to the ��� N� branch of the Cohen�Daubechies�

Feauveau family which is biorthogonal to the box function ���� Let us consider a simple example�

The low pass coe�cients are computed using a Haar �lter�

L�n� � �x��n� � x��n� ������

The high pass coe�cients are the residuals of a prediction of the odd samples based on the L�n��

A �rst order Haar prediction is

H �n� � x��n� ��� L�n��

while a third order predictor� i�e�� one that is exact for quadratics� is given by

H �n� � x��n� ��� ��L�n� ���
 � L�n� � L�n� ���
��

Higher order predictors can be build in a straightforward way� The smoothness of the resulting

scaling functions increases with the order� A lower bound for the H�older regularity R�N� as

a function of N is given by R��� � ��
� R��� � ������ R��� � ��
�� R��� � ������ and

asymptotically R�k� � �����N ���� In numerical experiments the order ��� �� �lter set has been

found to yield performance approaching that of the ��� �lter set that is more commonly used in

coding applications�

Figure �� Top row� analysis �left� and synthesis �right� scaling functions for the

order ����� Cohen�Daubechies�Feauveau �lter used in our experiments� Bottom

row� analysis and synthesis wavelets� These basis functions correspond to the

update�predict form of lifting�
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Our goal is to use non�linear predictor operators P �L� so that

H �n� � x��n� ��� P �L��n��

obtained by switching between di	erent linear predictors� We classify coe�cients at a given

scale into �edge� coe�cients and �non�edge� coe�cients based on the gradient at the next

coarser scale� For a region containing non�edge coe�cients� we use the �th order predictor�

Near edges we reduce the order of the predictor so that the neighborhood we use for prediction

never overlaps the edge� This way we maintain high accuracy away from edges� and avoid large

errors in the presence of edges� Figure � illustrates the process of selecting these predictors near

an ideal step edge�

o× × × × × ×o o o o o × o

× × ×o o o × × × ×o o o o

7531 7 7 7

15 37 7 7 7

x  [n]o
x  [n]e

Figure �� Predictor selection at an ideal step edge� Numbers indicate the order

of the predictors used� The closer to the edge� the lower order predictor is used�

As we stressed in the previous section� maintaining synchronization between the adaptations

of the encoder and the decoder is essential for a stable inversion� Encoding of a p�level transform

proceeds as follows� we �rst compute the coarsest scale coe�cients of the transform Lp�n� by

iterating the linear update procedure p times� We then quantize Lp�n� to bLp�n� and send them�

Then we compute the high pass coe�cients H �n� as

H �n� � Lp����n� ��� P �bLp��n��

quantize them to bH�n� and send them� Both encoder and decoder now need the quantized values

of the next �ner scale bLp��� the even and odd components are respectively computed by undoing

the prediction and updating step� but now based on the quantized values bLp�n��

bLp��
o �n� � bLp����n� �� � bHp�n� � P �bLp��n� ���

bLp��
e �n� � bLp����n� � �bLp�n�� bLp����n� ��

We now can compute the high pass coe�cients on the next �ner level� By basing our choice of

predictor at each stage on the quantized values bL� we maintain synchronization between encoder

and decoder�
�



���� Further Adaptivity� Non�linear lifting also allows us to use not only the low�passed

coe�cients for prediction of Xo�n�� but also other odd coe�cients in a causal neighborhood of

Xo�n�� Suppose our signal X �n� is a row in an image� We would predict Xo�n� from low pass

coe�cients on its left and right� Suppose there is a vertical step edge near Xo�n�� The precise

location of the edge cannot be determined from the low pass coe�cients Xo�n�� However� if we

know the value of the coe�cients from the row immediately above Xo�n�� we can determine the

orientation and strength of the edge� and we can use this information in the prediction of Xo�n��

The use of coe�cients from a causal neighborhood o	ers signi�cant potential reductions in

prediction errors� This increased �exibility comes at the price of decreased stability� Consider

the example above in which we resolve di�culties in predicting the location of a vertical edge

in a row of coe�cients by using already inverted coe�cients in the row above� Such a scheme

permits a quantization error in one row to propagate along a vertical edge to all other rows�

We can prevent such propagation by again using a DPCM�like strategy of using quantized data

from the causal neighborhood for making predictions in the encoder as well as in the decoder�

���� Related Work� The update�then�predict lifting scheme we describe is related to the Lapla�

cian pyramid of Burt and Adelson ��� in which images are represented as a series of prediction

residuals� and the predictors are not constrained to being linear� The Laplacian pyramid has

the disadvantage that it expands the number of coe�cients in the image being transformed by

a factor of ���� Lifting� on the other hand� guarantees a critically sampled decomposition�

Our non�linear lifting framework generalizes the ideas of de Quieroz et al� ���� and makes clear

the relationship between the non�linear �lter banks described by these authors and the wavelet

transform� The �lter bank described in ��� uses the update function U � � and a non separable

prediction function P that returns the median of its arguments� This �lter bank performs

particularly well for test images containing sharp edges� such as the cameraman image and

images of text� Perceptually this non�linear transform has signi�cant advantages near edges�

and it minimizes problems with ringing around edges� However� the transform su	ers from

speckling artifacts due to aliasing of high frequency noise into the low pass subbands� The use

of a better update function has the potential to eliminate this speckling while maintaining high

quality reconstruction around edges�

�� Preliminary Results

Figure � shows the result of a simple feasibility test of an edge�avoiding adaptive transform�

We demonstrate the ability of the adaptive transform to reduce the number of non�zero coe��

cients by computing the transform� thresholding the transform coe�cients with a large threshold�

and inverting the result� We use a black disk on a grey background as our test image� as this

image contains edges in all orientations� The �gure on the left is obtained by performing the

wavelet transform using the ����� Cohen�Daubechies�Feauveau functions shown in Figure �� The

�gure on the right was obtained using an adaptive transform�
�



Figure �� Reconstructed unit disks with threshold T � �� The left image was

transformed with the ��� �� update�predict linear lifting� The right was trans�

formed with an edge�avoiding non�linear lifting procedure� We assume that the

forward and inverse transforms make the same edge decisions�

For our adaptive transform we choose a �lter from the ��� N� branch of the CDF family� where

N � f�� �� �� �g� The choice of predictor is based on an edge analysis of each ��point prediction

window� We locate edges in the data by �nding local maxima in the gradient of the coe�cients�

We estimate the size of an edge by comparing an average of coe�cients on either side of the

edge� and we only adapt if the step size is large compared to the local variance on either side of

the edge� The prediction �lter is chosen as illustrated in Figure �� we choose the width of our

prediction window to be the largest window �up to width �� not containing an edge�

We see that in the adaptive transform we have signi�cantly reduced ringing around the edges

of the disk and we have preserved edge sharpness� The reason is that edges in our new transform

are represented in a more compact fashion� and as a result there is less degradation of the image

when we zero out small� non�zero coe�cients� Note that while ringing has been greatly reduced

in the horizontal and vertical edges� there are still some ringing artifacts in the diagonal direction�

The reason for these remaining artifacts is that we are using a separable transform in which we

seek to avoid horizontal and vertical edges�

One future research avenue that will allow us to avoid privileged edge directions in the trans�

form is to make use of a non�separable prediction function� We can further improve things by

predicting values along edges rather than across edges by using data in a causal neighborhood�
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